Differential pressure transmitters comprise a sensor module, an electronic housing, and process flanges. The sensor module features two sealed fluid systems, a pressure sensor, two isolation diaphragms, and an overpressure diaphragm. The electronic housing features an amplifier board and wiring terminals. The flanges serve as the outer wall of input chambers and they provide necessary LO and HI port connections.
In the sensor module, the electronic pressure sensor is positioned on the micro diaphragm, which creates a barrier between the two fluid systems. Of these two, one system corresponds to the LO pressure input and other to the HI pressure input. The isolation diaphragm is named so because it helps isolate the fluid system from the input pressure. These isolation diaphragms will retract or compress whenever a differential pressure is applied across the LO and HI ports. This retraction or compression usually occurs in response to the pressure applied. There are situations when the pressure applied across LO and HI ports may exceed the highest limits specified. In this condition, an overpressure diaphragm takes the control of the system, and stops overpressure from affecting the sensor.
The movement of isolation diaphragm under differential pressure gives valuable information on the variables in sealed fluid systems, which are being detected by the sensor.
Industrial Uses of Differential Pressure Transmitters
We have been delivering Rosemount differential pressure transmitters to our clients across industries such as:
- Water Treatment
- HVAC
- Food and Pharmaceuticals
- Paper
- Chemical and Petrochemical
- Offshore and Nuclear
- Subsea